Strongly self-dual graphs
نویسندگان
چکیده
منابع مشابه
Strongly pancyclic and dual-pancyclic graphs
Say that a cycle C almost contains a cycle C− if every edge except one of C− is an edge of C. Call a graph G strongly pancyclic if every nontriangular cycle C almost contains another cycle C− and every nonspanning cycle C is almost contained in another cycle C. This is equivalent to requiring, in addition, that the sizes of C− and C differ by one from the size of C. Strongly pancyclic graphs ar...
متن کاملSelf-dual graphs
We consider the three forms of self-duality that can be exhibited by a planar graph G, map self-duality, graph self-duality and matroid self-duality. We show how these concepts are related with each other and with the connectivity of G. We use the geometry of self-dual polyhedra together with the structure of the cycle matroid to construct all self-dual graphs. 1.1. Forms of Self-duality. Given...
متن کاملSelf-Dual Graphs
The study of self-duality has attracted some attention over the past decade. A good deal of research in that time has been done on constructing and classifying all self-dual graphs and in particular polyhedra. We will give an overview of the recent research in the first two chapters. In the third chapter, we will show the necessary condition that a self-complementary self-dual graph have n ≡ 0,...
متن کاملOn strongly 2-multiplicative graphs
In this paper we obtain an upper bound and also a lower bound for maximum edges of strongly 2 multiplicative graphs of order n. Also we prove that triangular ladder the graph obtained by duplication of an arbitrary edge by a new vertex in path and the graphobtained by duplicating all vertices by new edges in a path and some other graphs are strongly 2 multiplicative
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2011
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.05.010